Structural and spectroscopic models of the A-cluster of acetyl coenzyme a synthase/carbon monoxide dehydrogenase: Nature’s Monsanto acetic acid catalyst

نویسندگان

  • Todd C. Harrop
  • Pradip K. Mascharak
چکیده

Acetyl coenzyme A synthase/carbon monoxide dehydrogenase (ACS/CODH) is a bifunctional enzyme present in a number of anaerobic bacteria. The enzyme catalyzes two separate reactions namely, the reduction of atmospheric CO2 to CO (CODH activity at the C-cluster) and the synthesis of acetyl coenzyme A (ACS activity at the A-cluster) from CO, CH3 from a corrinoid iron-sulfur protein, and the thiol coenzyme A. The structure(s) of the A-cluster of ACS/CODH from Moorella thermoacetica revealed an unprecedented structure with three different metallic subunits linked to each other through bridging Cys-S residues comprising the active site. In these structure(s) a Fe4S4 cubane is bridged via Cys-S to a bimetallic metal cluster. This bimetallic cluster contains a four-coordinate Ni, Cu, or Zn as the proximal metal (to the Fe4S4 cluster; designated Mp), which in turn is bridged through two Cys-S residues to a terminal square planar Ni(II) (Nid, distal to Fe4S4) ligated by two deprotonated carboxamido nitrogens from the peptide backbone. It is now established that Ni is required at the Mp site for the ACS activity. Over the past several years modeling efforts by several groups have provided clues towards understanding the intrinsic properties of the unique site in ACS. To date most studies have focused on dinuclear compounds that model the Mp–Nid subsite. Synthesis of such models have revealed that the Nip sites (a) are readily removed when mixed with 1,10-phenanthroline (phen) and (b) can be reduced to the Ni(I) and/or Ni(0) oxidation state (deduced by EPR or electrochemical studies) and bind CO in terminal fashion with νco value similar to the enzyme. In contrast, the presence of Cu(I) centers at these Mp sites do not bind CO and are not removable with phen supporting a non-catalytic role for Cu(I) at the Mp site in the enzyme. The Nid site (coordinated by carboxamido-N/thiolato-S) in these models are very stable in the +2 oxidation state and not readily removed upon treatment with phen suggesting that the source of ‘labile Ni’ and the NiFeC ∗ Corresponding author. Tel.: +1 831 459 4251; fax: +1 831 459 2935. E-mail address: [email protected] (P.K. Mascharak). 0010-8545/$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.ccr.2005.04.019 3008 T.C. Harrop, P.K. Mascharak / Coordination Chemistry Reviews 249 (2005) 3007–3024 signal arises from the presence of Ni at the Mp site in ACS. This review includes the results and implications of the modeling studies reported so far. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unraveling the structure and mechanism of acetyl-coenzyme A synthase.

The bifunctional enzyme carbon monoxide dehydrogenase/acetyl-coenzyme A (CoA) synthase (CODH/ACS) is a key enzyme in the Wood-Ljungdahl pathway of carbon fixation. Carbon monoxide is combined with a methyl group and ultimately converted to acetyl-CoA at a unique Ni-containing bimetallic site in the A-cluster of this enzyme. Despite years of extensive biochemical and spectroscopic studies and th...

متن کامل

Life with carbon monoxide.

This review focuses on how microbes live on CO as a sole source of carbon and energy and with CO by generating carbon monoxide as a metabolic intermediate. The use of CO is a property of organisms that use the Wood-L jungdahl pathway of autotrophic growth. The review discusses when CO metabolism originated, when and how it was discovered, and what properties of CO are ideal for microbial growth...

متن کامل

Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl coenzyme A synthase in Methanosarcina acetivorans.

Conversion of acetate to methane (aceticlastic methanogenesis) is an ecologically important process carried out exclusively by methanogenic archaea. An important enzyme for this process as well as for methanogenic growth on carbon monoxide is the five-subunit archaeal CO dehydrogenase/acetyl coenzyme A (CoA) synthase multienzyme complex (CODH/ACS) catalyzing both CO oxidation/CO(2) reduction an...

متن کامل

A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans.

In anaerobic microorganisms employing the acetyl-CoA pathway, acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH) form a complex (ACS/CODH) that catalyzes the synthesis of acetyl-CoA from CO, a methyl group, and CoA. Previously, a [4Fe-4S] cubane bridged to a copper-nickel binuclear site (active site cluster A of the ACS component) was identified in the ACS(Mt)/CODH(Mt) from Moorella thermoac...

متن کامل

Crystallographic Snapshots of Cyanide- and Water-Bound C-Clusters from Bifunctional Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase†,‡

Nickel-containing carbon monoxide dehydrogenases (CODHs) reversibly catalyze the oxidation of carbon monoxide to carbon dioxide and are of vital importance in the global carbon cycle. The unusual catalytic CODH C-cluster has been crystallographically characterized as either a NiFe(4)S(4) or a NiFe(4)S(5) metal center, the latter containing a fifth, additional sulfide that bridges Ni and a uniqu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005